Technologia Bluetooth® w CM-700d umożliwia dwukierunkową komunikację z wyświetlaniem komunikatów Pass/Fail lub danych kolorymetrycznych.
Największe zbliżenie mierzonych różnic barw do oceny wizualnej
Jak już wspominałem kilkakrotnie w moich artykułach, ludzki narząd wzroku posiada bezsprzecznie doskonałą umiejętność oceny jakościowej, umożliwiającą określenie, czy dwie próbki barw są do siebie podobne, czy nie. Niestety, nasze oczy nie potrafią określić stopnia różnicy pomiędzy barwami ani stwierdzić, czy dana barwa mieści się w granicach tolerancji. Za każdym razem, gdy wytwórca produktu, w którym kolor odgrywa istotną rolę, i jego klient muszą odwołać się do samej tylko wizualnej oceny barw, może łatwo dojść do pomieszania dwóch rodzajów percepcji – minimalnej zauważalnej różnicy i maksymalnej akceptowalnej różnicy pomiędzy standardem i próbką. To często prowadzi do niespójnych decyzji, nieporozumień i konfliktów. Dzięki przyrządom pomiarowym różnice barw można wyrazić za pomocą wartości liczbowych. Oznacza to, że można precyzyjnie określić granice akceptowalności barw, które można następnie powielać w sposób zdecydowanie przewyższający ludzką wrażliwość na różnice barw.
Zastanów się teraz, ile razy doznawałeś frustracji, gdy Twoje wrażenia wzrokowe nie były zgodne ze zmierzonym odchyleniem barw? Zwłaszcza gdy w pobliżu cienkiej granicy pomiędzy akceptowalnym i nieakceptowalnym odcieniem barwy spektrofotometr wskazywał wynik PASS (pozytywny), a Twój wewnętrzny kolorysta miał nieprzyjemne przeczucie wyniku FAIL (negatywnego) – lub gdy miała miejsce przeciwna sytuacja.
Nie, dziś nie będę mówił o subiektywności naszych ocen wynikającej z naturalnych ograniczeń ludzkiego systemu sensorycznego ani o efektach metamerycznych. Regularnie rozmawiam ze specjalistami od kolorów i stwierdzam, że wciąż istnieje dużo niejasności w kwestii, którą metodę tolerowania należy stosować podczas pomiaru różnic barw. Dlatego dziś chciałbym skupić się na równaniach ΔE*. Z badań fizjologii człowieka wiadomo, że tolerancja, jaką uznajemy za dopuszczalną, tworzy trójwymiarową elipsoidę, której powierzchnia reprezentuje różne limity jasności, odcienia i nasycenia. W rzeczywistości przeciętny obserwator dostrzega najpierw różnice odcienia, następnie różnice nasycenia, a dopiero na końcu różnice jasności.
Problem ten można z powodzeniem rozwiązać dzięki zastosowaniu limitu tolerancji dla każdej współrzędnej barw. Oczywiście zastosowanie trzech parametrów oceny zamiast jednego czyni tę metodę mniej elegancką w porównaniu do pojedynczej wartości liczbowej PASS/FAIL. Jednak rozbicie odchylenia barwy na komponenty osiowe daje dużo lepsze wyczucie przyczyny przesunięcia barwy. Co istotne, podejście to ogranicza ryzyko rozbieżności pomiędzy oceną dokonywaną przez człowieka a odczytem z urządzenia. Przy zastosowaniu współrzędnych kartezjańskich ΔL*, Δa* i Δb*, przestrzeń tolerancji nakreślona wokół określonej standardowej definicji w przestrzeni barw CIE L*a*b* jest przedstawiona w formie prostokąta i koreluje z postrzeganiem wizualnym na poziomie do 75%. W przypadku zastosowania współrzędnych biegunowych ΔL*, ΔC* i Δh° przyjmuje kształt cylindrycznego segmentu, którego rzut z percepcją wizualną obejmuje do 85% mierzonych próbek.
W 1984 r. Komitet Pomiaru Barw (Colour Measurement Committee – CMC) Brytyjskiego Towarzystwa Barwiarzy i Kolorystów opracował równanie oparte na notacji barw L*C*h°. Wzór ΔE*cmc, utworzony pierwotnie na potrzeby producentów tekstyliów, zyskał uznanie i jest obecnie powszechnie stosowany jako metoda tolerowania praktycznie we wszystkich branżach przemysłowych. Uwzględniając określoną empirycznie wrażliwość ludzkiego oka ustaloną na podstawie tysięcy ocen wizualnych, metoda CMC wyznacza obliczoną matematycznie elipsoidę wokół każdej mierzonej barwy wzorcowej z półosią odpowiadającą odcieniowi, nasyceniu i jasności. Elipsoidy te przedstawiają poziom akceptacji i odpowiednio różnią się między sobą pod względem rozmiaru, w zależności od umiejscowienia w przestrzeni barw CIE L*a*b*. Odzwierciedlają ściślejsze zakresy tolerancji wizualnej, jakie obserwatorzy posiadają dla barw nienasyconych, a jednocześnie luźniejsze zakresy tolerancji dla barw o wysokim nasyceniu. Na przykład elipsoidy w obszarze pomarańczowym są dłuższe i węższe od elipsoid w obszarze zielonym, które są szersze i bardziej okrągłe. Wraz ze wzrostem nasycenia barwy zmienia się także ich rozmiar i kształt. Równanie CMC pozwala także na zmianę całkowitego rozmiaru elipsy określonego przez wskaźnik tolerancji jasność/chromatyczność (l:c) w celu lepszego dopasowania do wartości uznanej za akceptowalną.
Zgodnie z wrażliwością oka na przesunięcie barw, tolerancja jasności (l) jest ustawiana zazwyczaj jako dwukrotność zakresu odcienia i nasycenia (c). I co najlepsze – jedna skala ΔE*cmc opisuje tę samą równoważną różnicę wizualną w całej przestrzeni barw. Ponadto korelacja pomiędzy oceną ludzką a odczytem z urządzenia wzrasta do 95%.
Międzynarodowa Komisja Oświetleniowa od wielu dziesięcioleci podejmuje wytężone starania w celu wypracowania wzoru matematycznego ΔE*, który byłby doskonale skorelowany z naszym percepcyjnym poczuciem dopasowania barw. Po opublikowaniu metody tolerowania nazwanej CIE94 w latach 90. XX wieku jej najnowszym osiągnięciem jest wzór DE2000 przedstawiony w roku 2001. Został opracowany w celu usunięcia pozostałych niedoskonałości przestrzeni barw CIE L*a*b*. Podobnie jak metoda tolerowania CMC, CIEDE2000 także oblicza elipsoidy i zapewnia jeszcze bardziej wyszukane środowisko do regulowania ich rozmiaru i kształtu. Posiadając jeszcze lepszy poziom ufności (powyżej 95%), z powodzeniem osiąga ostateczny cel CIE, jakim jest możliwie największe zbliżenie mierzonych różnic barw do oceny wizualnej. Wszystkie spektrofotometry i aplikacje firmy Konica Minolta posługują się ponadto wzorem DE2000.
Komentarze (0)